Engineering of Acetate Recycling and Citrate Synthase to Improve Aerobic Succinate Production in Corynebacterium glutamicum
نویسندگان
چکیده
Corynebacterium glutamicum lacking the succinate dehydrogenase complex can produce succinate aerobically with acetate representing the major byproduct. Efforts to increase succinate production involved deletion of acetate formation pathways and overexpression of anaplerotic pathways, but acetate formation could not be completely eliminated. To address this issue, we constructed a pathway for recycling wasted carbon in succinate-producing C. glutamicum. The acetyl-CoA synthetase from Bacillus subtilis was heterologously introduced into C. glutamicum for the first time. The engineered strain ZX1 (pEacsA) did not secrete acetate and produced succinate with a yield of 0.50 mol (mol glucose)(-1). Moreover, in order to drive more carbon towards succinate biosynthesis, the native citrate synthase encoded by gltA was overexpressed, leading to strain ZX1 (pEacsAgltA), which showed a 22% increase in succinate yield and a 62% decrease in pyruvate yield compared to strain ZX1 (pEacsA). In fed-batch cultivations, strain ZX1 (pEacsAgltA) produced 241 mM succinate with an average volumetric productivity of 3.55 mM h(-1) and an average yield of 0.63 mol (mol glucose) (-1), making it a promising platform for the aerobic production of succinate at large scale.
منابع مشابه
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum
Corynebacterium glutamicum, an established industrial amino acid producer, has been genetically modified for efficient succinate production from the renewable carbon source glucose under fully aerobic conditions in minimal medium. The initial deletion of the succinate dehydrogenase genes (sdhCAB) led to an accumulation of 4.7 g l(-1) (40 mM) succinate as well as high amounts of acetate (125 mM)...
متن کاملGlycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum
Corynebacterium glutamicum, an established microbial cell factory for the biotechnological production of amino acids, was recently genetically engineered for aerobic succinate production from glucose in minimal medium. In this work, the corresponding strains were transformed with plasmid pVWEx1-glpFKD coding for glycerol utilization genes from Escherichia coli. This plasmid had previously been ...
متن کاملEngineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.
We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sp...
متن کاملIdentification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle.
Genome sequencing revealed that the Corynebacterium glutamicum genome contained, besides gltA, two additional citrate synthase homologous genes (prpC) located in two different prpDBC gene clusters, which were designated prpD1B1C1 and prpD2B2C2. The coding regions of the two gene clusters as well as the predicted gene products showed sequence identities of about 70 to 80%. Significant sequence s...
متن کاملAnaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, su...
متن کامل